Aging Experience with GEM- Detectors

HERA-B MSGC with GEM

HERA-B MSGC

Operation in hadronic beam:

Spark problem due to HIP

induced discharges

→ fast destruction of strips

HIP induced discharges are

reproducible in Lab

HERA-B MSGC

HERA-B MSGC

Oct 1998, PSI test: (Ar-DME 50-50)

- rapid aging of chambers after 0.4 HERA-B years (2 mC/cm)
- irradiation on large areas
- conventional anode aging,
 deposits on anodes (and only there)

- Similar destructions occurred when operated and irradiated fully at HERA
- Elongation of GEM foil due to Ar/DME

COMPASS Triple GEM

Readout at ground-potential

COMPASS Triple GEM

COMPASS-beam: $\sim 2 \times 10^8$ muons ($\sim 10^8$ protons) per 5 s spill → "beam killer"

COMPASS-GEM foil

Hit map for $\sim 2 \times 10^8$ muons/spill 6

Triple GEM Discharge Probability

10

Discharge probability

10

10

10-

GEM Discharge Probability

Double GEM in M2 beam line:
Discharges did not harm the
detector

S. Bachmann et al. Nucl. Instrum. Methods A470(2001)548

GEM Discharge Probability

π M1-beam at PSI:

- 5 x 10⁷ pions/s
- after irradiation with $10^{12} \, \pi$ at highest intensity no discharges observed
- Increasing the gain > 10⁴: several thousand discharges → fully operational until end of test beam

Triple GEM Aging Test

(S. Kappler International Workshop on Aging Phenomena in Gaseous Detectors October 2-5, 2001 at DESY in Hamburg)

Triple GEM Aging Test

- + Test of a large-size honeycomb triple-GEM detector (31x31cm²)
- + Production model with a less optimal choice of materials (epoxies, sealants, etc.)
- + Operated in Ar:CO₂ (70:30)
- + Effective gain of $G_{eff} = 8500$

- + Aging Measurement performed with an 8.9keV X-ray beam on 1/4 of the detector area in 2x10 days
- + More than 7mC/mm² or 1.7 · 10¹¹ MIPs/mm² collected (corresponding to more than 5 yrs. *COMPASS*)

No Loss of Gain or Energy Resolution observed!

- + Gas mixture with good aging properties: Ar:CO₂
- + Smaller sensitivity of the GEM to aging due to:
 - Absence of thin anodes
 - Gas amplification is localized inside the holes, rather far from signal electrodes and walls
 - Field shape and strength only little affected by possible polymerisation deposits